CITY OF SAINT PAUL Christopher B, Coleman, Mayor 375 Jackson Street, Suite 220 Saint Paul, Minnesota 55101-1806 Telephone: 651-266-8989 Facsimile: 651-266-9124 Web: www.sipaul.gov/dsi ## RECEIVED APR 0 8 2016 ## Sound Level Variance Application City of Saint Paul Noise Ordinance (Chapter 293) By: City of St Paul DSI | fewer than forty five (45) days prior to the public hearing date that is | | | | | | |--|--|--|--|--|--| | 1. Organization/person seeking variance: Flannery Construction / | Doug Hawkinson | | | | | | 2 Mailing Address William code: 1375 St. Anthony Avenue | | | | | | | 3. Responsible person: Doug Hawkinson / Kenneth Allen Title | Project Manager / Superintendent | | | | | | 4. Event Name: Construction of Brownstone Structure at 839 | University Ave, St. Paul. | | | | | | 5. Telephone: (612) 396-4665 E-Mail: dhawkinson@flanneryconstruction.com | | | | | | | 6. Date(s) during which the variance is requested: 6/15/16 to 7/15/16 to 8/15/16 | | | | | | | 7. Noise source - Time(s) of operation: 7:00 cm - 6:00 pm | | | | | | | - Time(s) of pre-event sound check: | | | | | | | 8. Address or legal description of Noise source: 839 University Ave, St. Paul | | | | | | | | | | | | | | 9. Sound level requested: 200 DB per Pile hamme | - Strike (see attached) | | | | | | 10. Describe the noise source and all equipment involved: Exercutors, latus boom crane, | | | | | | | pile hammer, dump trucks, misc. heavy | | | | | | | | | | | | | | 11. Describe the steps that will be taken to minimize the noise levels: | haintain an aggressive | | | | | | schedule for pile driving to minimize d | | | | | | | equipment to idle when not or in ope | | | | | | | 12. State reason for seeking variance: (E.g. music, announcements, construction, etc.) | | | | | | | Construction demolition of existing building. Pile driving for soil retention system along | | | | | | | university. | | | | | | | 13. Attach site diagram showing location of noise source(s), streets, sto | iges, tents, etc. (If there will be amplified | | | | | | sound, indicate location and direction that all speakers will be facing.) N | | | | | | | | • | | | | | | 14. Return completed Application, Site Diagram, and \$169.00 fee to: | CITY OF SAINT PAUL | | | | | | | DEPARTMENT OF SAFETY AND INSPECTIONS 375 JACKSON STREET, SUITE 220 | | | | | | | SAINT PAUL, MN 55101-1806 | | | | | | | | | | | | | Signature of responsible person: | Date:4/8/16 | | | | | Note: A public hearing before the Saint Paul City Council is required. Application and fee must be received no | Pile Type | S | ound Level (single strike) | | |--|---|--|-------------------------| | Wood piles: 1 | 180 dB _{peak} | 170 dB _{RMS} | 160 dB SEL | | Concrete piles: ² | 192 dB _{peak} | 176 dB _{RMS} | 174 dB SEL | | Steel H-piles ³ : | 190 dB _{peak} | 175 dB _{RMS} | 155 dB SEL | | 12-inch steel piles: | 208 dBpeak ⁴ | 191 dBRMS ⁵ | 175 dB SEL ⁶ | | 14-inch steel piles: | 195 dB _{peak} @ 30m ⁷ | 180 dB _{RMS} @ 30m ⁸ | | | 16-inch steel piles ⁸ : | 200 dB _{peak} @ 9 m | 187 dB _{RMS} @ 9m | | | 24-inch steel piles ⁹ : | 212 dB _{peak} | 189 dB _{RMS} | 181 dB SEL | | 30-inch steel piles 10: | 212 dB _{peak} | 195 dB _{RMS} | 186 dB SEL | | 36-inch steel piles ¹¹ : | 214 dB _{peak} | 201 dB _{RMS} | 186 dB SEL | | 60-inch dia. steel piles ¹² ; | 210 dB _{peak} | 195 dB _{RMS} | 185 dB SEL | | 66-inch dia. steel piles ¹² : | 210 dB _{peak} | 195 dB _{RMS} | | | 96-inch dia, steel piles ¹² : | 220 dB _{peak} | 205 dB _{RMS} | 195 dB SEL | | 126-inch dia. steel piles 12: | 213 dB _{peak} @ 11m | 202 dB _{RMS} @ 11m | | | 150-inch dia, steel piles 13: | 200 dB _{peak} @ 100m | 185 dB _{RMS} @ 100m | | - 4. Illingworth and Rodkin (2002). - 5. CalTrans (2003 personal communication) has measured the sound energy emanating from driving 12-inch diameter steel piles to range between 180 190 dB, and 14-inch diameter steel piles to range between 195 and 200 dB. Vibratory driving has been shown to be 10 20 dB lower than impact driving steel piles of similar diameter (CalTrans 2003 personal communication). 6 Laughlin (2006). - 7.. Reyff (2003). - 8. Laughlin, Jim. 2004. Underwater Sound Levels Associated with the Construction of the SR 240 Bridge on the Yakima River at Richland. WSDOT, Office of Air Quality and Noise, Seattle, WA. September 2004. 33 pages. - 9. Laughlin (2005a). - 10. Laughlin (2005b). - 11. Laughlin (2007). - 12. Reyff (2003). - 13. Reyff (2003). ^{1.} Timber piles, 12-inches in diameter, have been measured underwater by Illingworth and Rodkin and are published in the draft Pile Driving Compendium which as of the date of this update has not yet been released as final. Illingworth and Rodkin (2004) have compared the shape of the sound wave between steel piles and timber piles and found that the timber pile produced a more 'rounded' wave than with steel piles. This means that although the peak sound levels may be similar, the waveform appears more stretched out than for steel piles and the rise time is relatively slower. A slower rise time means that the shock wave produced with each pile strike is not as severe presumably resulting in less damage to the fish. The effect is similar to the difference between a push and a punch. ^{2.} Concrete piles measured had 36-inch diameter and 4 --inch wall thickness (~419 Lbs/ft weight per unit length (MacGillivray et al. 2007). Concrete piles with 24-inch diameter have been measured by POV, and sound levels range between 190 dBpeak and 205 dBpeak (DesJardin 2003 pers. comm..). While there have been no documented fish kills with the installation of concrete piles, the Services may require sound mitigation strategies or monitoring because of the lack of formally documented effects (CalTrans 2003 personal communication). ^{3.} Illingworth and Rodkin, pers. comm. (2004). Illingworth and Rodkin (2004 personal communication) measured 10-inch steel H-piles in a slough approximately 6 feet deep at 10 meter distance from the pile to range between 180 – 195 dB (160-177 dB RMS). They also measured 10-inch steel H-pile at Noyo Bridge with peak levels at 180 dB (165 dB RMS) at 30 meters from the pile. An H-pile driven on shore next to the water produced peak levels in the water of 170-175 dB (155-162 dB RMS) at 23 meters from the pile. The measurements at Noyo Bridge were highly variable due to the shallow water. ## **DSI RECEIPT** CITY OF SAINT PAUL Department of Safety and Inspections 375 Jackson Street Suite 220 Saint Paul, Minnesota 55101-1806 Phone: (651) 266-8989 Fax: (651) 266-9124 www.stpaul.gov/dsi Date: 04/08/2016 Received From: FLANNERY CONSTRUCTION 1375 ST ANTHONY AVE ST PAUL MN 55104 Description: Invoice Details **Invoice Amount** **Amount Paid** 956733 Noise Variance \$169.00 \$169.00 **TOTAL AMOUNT PAID:** \$169.00 Paid By: | Payment Type | Check # | Received Date | Amount | |--------------|---------|---------------|----------| | Check | 111078 | 04/08/2016 | \$169.00 |